

Declaration of Performance

No.:

- 1. Unique identification code of the product-type:
- 2. Intended use/es:
- 3. Manufacturer:

System/s of AVCP 4.

Harmonised standard: 5.

Notified body/ies:

6. Declared performance/s:

DoP Protect Alu-Tec 001 FEF Kaiflex Protect Alu-Tec Thermal insulation for technical building equipment an industrial installations (ThIBEII) Kaimann GmbH Hansastraße 2-5 D-33161 Hövelhof 3 Declaration of performance according to product standard EN 14304:2009+A1:2013

0751 "Forschungsinstitut für Wärmeschutz e.V. München"

Essential Features		Performance				
Reaction to fire euroclass- characteristics	Reaction to fire	Sheet: d_N = 3 - 50 mm Tube: d_N = 6 - 50 mm	E EL			
Acoustic absorption index	Structure-borne noise transmission Acoustic absorption		NPD			
Thermal resistance	Thermal conductivity Dimensions and limits		°C	-10 °C	0 °C	10 °C
		Sheet: d_N = 3 - < 32 mm Tube: d_N = 6 - < 25 mm	W/(m•K)	0,032	0,033*	0,034
		Sheet: $d_N = \ge 32 \text{ mm}$ Tube: $d_N = \ge 25 \text{ mm}$	W/(m•K)	0,035	0,036**	0,037
Water permeability	Water absorption		WS01 (W _p ≤ 0,1 kg/m ²)			
Water vapour permeability	Water vapour diffusion resistance	Sheet: d _N = 3 - 50 mm Tube: d _N = 6 - 50 mm	MU 10.000 (µ ≥ 10.000)			
Release of corrosive substances	Minor amounts of water soluble chlorides and pH- value		NPD			
Release of dangerous substances to indoor environment	Release of dangerous substances		NPD ^a			
Continuous glowing combustion	Continuous glowing combustion		NPD			
Durability of reaction to fire against ageing/degradation	Durability characteristics ^b					
Durability of thermal resistance against ageing/degradation	Durability characteristics ^c					
	Maximum service temperature	Sheet: d _N = 3 - 50 mm Tube: d _N = 6 - 50 mm	ST(+) 80 °C			
	Minimum service temperature	Sheet: d_N = 3 - 50 mm Tube: d_N = 6 - 50 mm	ST(-) -30 °C			
Durability of reaction to fire Against high temperature	Durability characteristics ^b					
Durability of thermal resistance against high temperature	Durability characteristics ^c					

b

No test method yet adopted. The fire performance of flexible elastomeric foam does not change with time. The thermal conductivity of flexible elastomeric foam does not change with time

 $\begin{array}{l} \lambda_{0} \leq 0,033 + 7,1316 \cdot 10^{\circ} \, \vartheta + 1,2533 \cdot 10^{\circ} \, \vartheta^{2} \ \big| \ ^{\circ} \lambda_{0} \leq 0,036 + 7,1316 \cdot 10^{\circ} \, \vartheta + 1,2533 \cdot 10^{\circ} \, \vartheta^{2} \ \big| \ ^{\circ} \lambda_{0} \leq 0,036 + 7,1316 \cdot 10^{\circ} \, \vartheta + 1,2533 \cdot 10^{\circ} \, \vartheta^{2} \ \big| \ ^{\circ} \lambda_{0} \leq 0,036 + 7,1316 \cdot 10^{\circ} \, \vartheta + 1,2533 \cdot 10^{\circ} \, \vartheta^{2} \ \big| \ ^{\circ} \lambda_{0} \leq 0,036 + 7,1316 \cdot 10^{\circ} \, \vartheta + 1,2533 \cdot 10^{\circ} \, \vartheta^{2} \ \big| \ ^{\circ} \lambda_{0} \leq 0,036 + 7,1316 \cdot 10^{\circ} \, \vartheta + 1,2533 \cdot 10^{\circ} \, \vartheta^{2} \ \big| \ ^{\circ} \lambda_{0} \leq 0,036 + 7,1316 \cdot 10^{\circ} \, \vartheta + 1,2533 \cdot 10^{\circ} \, \vartheta^{2} \ \big| \ ^{\circ} \lambda_{0} \leq 0,036 + 7,1316 \cdot 10^{\circ} \, \vartheta + 1,2533 \cdot 10^{\circ} \, \vartheta^{2} \ \big| \ ^{\circ} \lambda_{0} \leq 0,036 + 7,1316 \cdot 10^{\circ} \, \vartheta + 1,2533 \cdot 10^{\circ} \, \vartheta^{2} \ \big| \ ^{\circ} \lambda_{0} \leq 0,036 + 7,1316 \cdot 10^{\circ} \, \vartheta^{2} \ \big| \ ^{\circ} \lambda_{0} \leq 0,036 + 7,1316 \cdot 10^{\circ} \, \vartheta^{2} \ \big| \ ^{\circ} \lambda_{0} \leq 0,036 + 7,1316 \cdot 10^{\circ} \, \vartheta^{2} \ \big| \ ^{\circ} \lambda_{0} \leq 0,036 + 7,1316 \cdot 10^{\circ} \, \vartheta^{2} \ \big| \ ^{\circ} \lambda_{0} \leq 0,036 + 7,1316 \cdot 10^{\circ} \, \vartheta^{2} \ \big| \ ^{\circ} \lambda_{0} \leq 0,036 + 7,1316 \cdot 10^{\circ} \, \vartheta^{2} \ \big| \ ^{\circ} \lambda_{0} \leq 0,036 + 7,1316 \cdot 10^{\circ} \, \vartheta^{2} \ \big| \ ^{\circ} \lambda_{0} \leq 0,036 + 7,1316 \cdot 10^{\circ} \, \vartheta^{2} \ \big| \ ^{\circ} \lambda_{0} \leq 0,036 + 7,1316 \cdot 10^{\circ} \, \vartheta^{2} \ \big| \ ^{\circ} \lambda_{0} \leq 0,036 + 7,1316 \cdot 10^{\circ} \, \vartheta^{2} \ \big| \ ^{\circ} \lambda_{0} \leq 0,036 + 7,1316 \cdot 10^{\circ} \, \vartheta^{2} \ \big| \ ^{\circ} \lambda_{0} \leq 0,036 + 7,1316 \cdot 10^{\circ} \, \vartheta^{2} \ \big| \ ^{\circ} \lambda_{0} \leq 0,036 + 7,1316 \cdot 10^{\circ} \, \vartheta^{2} \ \big| \ ^{\circ} \lambda_{0} \leq 0,036 + 7,1316 \cdot 10^{\circ} \, \vartheta^{2} \ \big| \ ^{\circ} \lambda_{0} \leq 0,036 + 7,1316 \cdot 10^{\circ} \, \vartheta^{2} \ \big| \ ^{\circ} \lambda_{0} \leq 0,036 + 7,1316 \cdot 10^{\circ} \, \vartheta^{2} \ \big| \ ^{\circ} \lambda_{0} \leq 0,036 + 7,1316 \cdot 10^{\circ} \, \vartheta^{2} \ \big| \ ^{\circ} \lambda_{0} \otimes 0,036 + 7,1316 \cdot 10^{\circ} \, \vartheta^{2} \ \big| \ ^{\circ} \lambda_{0} \otimes 0,036 + 7,1316 \cdot 10^{\circ} \, \vartheta^{2} \ \big| \ ^{\circ} \lambda_{0} \otimes 0,036 + 7,1316 \cdot 10^{\circ} \, \vartheta^{2} \ \big| \ ^{\circ} \lambda_{0} \otimes 0,036 + 7,1316 \cdot 10^{\circ} \, \vartheta^{2} \ \big| \ ^{\circ} \lambda_{0} \otimes 0,036 + 7,1316 \cdot 10^{\circ} \, \vartheta^{2} \ \big| \ ^{\circ} \lambda_{0} \otimes 0,036 + 7,1316 \cdot 10^{\circ} \, \vartheta^{2} \ \big| \ ^{\circ} \lambda_{0} \otimes 0,036 + 7,1316 \cdot 10^{\circ} \, \vartheta^{2} \ \big| \ ^{\circ} \lambda_{0} \otimes 0,036 + 7,1316 \cdot 10^{\circ} \, \vartheta^{2} \ \big| \ ^{\circ} \lambda_{0} \otimes 0,036 + 7,1316 \cdot 10^{\circ} \, \vartheta^{2} \ \big| \ \lambda_{0} \otimes 0,036 + 7,1316 \cdot$

Page 1

The performance of the product identified above is in conformity with the set of declared performance/s. This declaration of performance is issued, in accordance with Regulation (EU) No 305/2011, under the sole responsibility of the manufacturer indentified above.

Signed for and on behalf of the manufacturer by:

Andrea Trox, Head of Quality Management

A. Trox

Hövelhof, 21.11.2022

Page 2

